J. Sci. I. R. Iran

Vol. 1, No.2
Winter, 1990

THE EMPIRICAL BAYES METHOD OF
ANALYSIS OF A SERIES OF EXPERIMENTS

M.R. Meshkani

Department of Mathematics, Faculty of Science. Shahid Beheshii Unicersity. Tehran Iran

L. Billard

University of Georgia, Athens, Georgia, U.S.A.
Keywords: Series of Experiments, Prior, Posterior, Bayes

Abstract

The classical method of analysis of a series of experiments is somewhat
involved in being conditional on various, occasionally unrealistic, assump-
tions such as homogeneity of variances of experimental error, lack of
interactions of treatments and places,etc. In this work, we adopt a Bayesian
view to account for such heterogeneities. Our appoach isillustrated by areal
series of experiments regarding the effect of fertilizers on crops of sugarbeet
in various places of Iran. Conjugate priors are considered for parameters of
the model and posteriors are obtained. Using information from different
places, the unknown priors are estimated and the empirical Bayes procedure

1s employed.

1. Introduction

In many research programs it is quite common to
repeat the same experiment at a number of different
locations and/or on a number of different occasions.
Sometimes itis desired to produce aset of recommenda-
tions which is to apply to a population that is extensive
either in space or in time, orin both. Inagricultural field
experimentation, examples of this practice abound.
The conclusions drawn from these series, if they are to
be applied, must be valid for at least several seasons in
the futv-= and overareasonablylarge areaof farmland.
For exam., e, it has been found that the effectiveness of
the common fertilizers on an extensively cultivated
crop, such as sugarbeet, varies from field to field and,
even more markedly, from season to season. A single
experiment, however well conducted, provides infor-
mation about only one location and one season. Series
of experiments conducted at several different locations
in the area for which recommendations are sought, can
remedy the situationinsupplyinginformationaboutthe
whole area.
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Our particular motivations in this study is the
analysis of aseries of agronomicexperimentsconducted
in ten provinces of Iran to investigate the effects of
different fertilizers on the yield of sugarbeet. There
were two fertilizers, four levels of nitrogen and three
levels of phosphate. At each location, the experiment
consisted of a randomized block design with three
replicates of each of the twelve fertilizer treatment
combinations. We confine our attention to the statisti-
cal analysis.

The classical method of analysis of a series of
experiments is somewhat involved in being conditional
on various, occasionally unrealistic, assumptions such
as homogeneity of variances of experimental error
across each experimentinthe series, lack of interactions
between treatments and places, treatments and times,
etc., that is, there is no interaction between the
treatments and the particular experiment in the series
itself (be that a series across time, locations etc. ). Two
major problems arise. First the experimental error
variances do in fact often differ from place toplace. This
can be tested via Bartlett’s test of homogeneity of



Vol. 1, No.2
Winter, 1990

variances. If the variances are heterogeneous, the usual
F tests-are not valid and suitable transformations or
separate analyses for each location, or sets of
homogeneous locations, are required. Secondly, the
treatment and location interactions may not be
homogeneous especially in factorial experiments.
Some factors may behave in a stable way, while others
are more erratic. In this case it is usually advisable to
analyze the experimentsseparately foreachhomogone-
ous set [9]. As we shall see below both of these
complications are present in our sugarbeet data, thus
prompting us to find a more efficient mode of analysis.

These difficulties, most especially the problems
associated with intrinsic heterogeneities in the var-
jances of the underlying error variables, can be
accommodated by utilizing the techniques of Bayesian
analysis. A direct Bayes approach suffers in that it is
dependent upon subjective choice of prior distributions
which may not be acceptable to all experimenters
interested in the results of the subsequent analysis. To
avoid this problem we therefore select the natural
conjugate prior and estimate its parameters from data
gathered on previous experiments in the series, thus
implementing the ideas of empirical Bayes techniques
todrawinferences about the single experimentathand.

The empirical Bayes approach to statistical deci-
sion problems is applicable when we encounter the
same decision problem in the sequence repeatedly and
independently, with a fixed butunknown prior distribu-
tion for the parameter. It is not expected that all
decision problems will be embeddedinsuchasequence.
However, when they are, the empirical Bayesapproach
offers certain advantages over any aproach which
ignores the fact that the parameter is itself a random
variable. This approach also has advantages over
approaches which assume a personal prior not changing
with experience, [6]. See also [3,5] for a nice review of
empirical Bayes techniques.

In particular, the assumptions of empirical Bayes
procedures are especially suitable to the framework of
series of experiments.

Before presenting our analysis (in Section 3) we
first provide, in Section 2, some basic results tor Bayes
estimators and empirical Bayes estimators resulting
from the natural conjugate priors. We estimate the
treatment effects and perform various contrasts. Our
analysis includes a comparison of results obtained by
using maximum likelihood methods. We conclude that
the empirical Bayes approach has smaller Bayes risk
than does the maximum likelihood estimator and
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therefore should be considered seriously for use in the
analysis of data of this type.

2. Theoretical Background

We consider the problem as a Bayesian decision
theoretic problem. Let A=(8,%) be the parameters of
the distribution from which we have some observations.
We consider the loss function L (d, A), where d is the
decision to be made about the A. Here, the decisionrule
is an estimator to be used for estimating the mean of aset
of multivariate normal vectors whose variances are
unknown and presumably not the same. A joint prior
distibution, m(A) with some metaparameters § =(u, %)
is assumed. the competing decision rules will be judged
according to their overall expected loss (i.e., Bayes
risk), denoted by w (d, ). In the case of squared error
loss, the Bayes estimator is the mean of posterior
distribution which depends on the metaparameters.
These metaparameters can be estimated from the
marginal distribution of the data, which would give the
empirical Bayes (EB)estimator, d,. Such an EB
estimator would share the optimal property of the
Bayes estimator, given the metaparameters are effi-
ciently estimated.

2.1. Conjugate priors for the parameters of the
multinormal distribution.

Following Ando and Kaufman (2] and Press and
Rolph [5], we obtain the conjugate priors of the
multinormal distribution. Suppose Y is a normally
distributed p-vector, with all parameters unknown. For
a random sample of N observations,

p(Y, e YN|o,z)o<|z|'§ exp (-Q), (2.1)

where
1 X :
Q=—-23(Y;-0) 2'(Y-9).
2 j=l
or setting A=3"" and expanding Q, we have

p(Yy,...,Yx16,0)

xflaliexp (-Q)IIAIT exp(-Q)] (2.2)

where

N
Q,=N(67) A(0—7)12, Q=[2Y AY-NY AY ]2

i=1.
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Interchanging the role of Y and 8in Q,, we canshow the
conditional conjugate prior of 8is

m(618)=N(u.%)

where u is an arbitrary p-vector, the mean of the prior
distribution. The joint prior of (6,4 ) is

w(8,0)=m(81A)m ().

To specify m,(A), we note that the second term in the
right hand side of (2.2) can be written as

Nl N
IAI 7 exp{-tr[Z Y’iAYi-NY’AY]/z}
1=1

exp{- Luav }
2
where tr denotes the trace of a matrix and where
V= EY Y’ ~Nyy”.

=1

Now, by considering A to be a variable matrix, we
assume it follows a Wishart distribution W(G,p,m),
1.e.,

m-p-1

m(L) =Gl 18177 exp{-trAG'%},mzp.

Thus, we have an inverse Wishart prior with arbitrary
parameters G and m for the distribution of the
covariance matrix 3=A".

After some algebra, we arrive at the following
conjugate prior for (8,2)

v+l .
w(e,z)oclzr% exp {-(6-u) Z1(0-p)2+u'G "}
(2.3)

with parameters v=m+p+1>2p, u, and G. Fordetails
of this derivation, see [4].

2.2. Bayes estimators for the multinormal parameters.
We assume the squared error loss function.Then,

using well established techniques we have the Bayes

estimator for (8,2) as (see [1])

6,=E(81y,V) =pu+Ny)/(N+1),N+m-2p>1, (2.4)

and for N+ m-2p-2>0,

3,=E(317,V)=[V+G+NN+1)" (u-9)(u-F) /(N +m-
2p-2),
(2.5)
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where N is the sample size, and where

§=N"2y;, V=(Vy), k,h,=1
i=1

’ '-’pa

with

N
kazl()’jk' Vi) (th‘yh)
i=

are the sample mean vector and convariance matrix,
respectively.

It seems unreasonable to assume that the parame-
ters G,u, and m are all known or that occasionally all
persons interested in this experiment can agree on what
values these parameters might assume. The above
estimators are only applicable when one can supply
some sort of estimates for the prior distribution. Thus
we estimate these parametersto give usempirical Bayes
estimators.

2.3. Empirical Bayes estimators

It is assumed that the data consist of a p-vector of
observations Y from each of the (n+1)locations, each
location having N replicates, i=1,2,...,N,j=1,2,....n;
n+1. Each time, the observations fromone location are
considered for inference about their (6,%)and the restof
observations so called «past data» are used to estimate
G,u, and m.

Thus, for the particular location oI interest
(i=n+1), there is a pair of sufficient statistics (Y,V)
whose marginal distributioninvolvesthe parameters G,
w, and m. We need to estimate this parameters using as
our data, the sample of n observations obtained from
the locationsi=1,...,n. Uponsubstituting the estimates
G,u, and m in (2.4) and (2.5), we would obtain the
corresponding empirical Bayes estimators. Thus, we
need to derive the marginal density of (Y,V)andthence
estimate its parameters. To this end, some results from
Siegel [8] are helpful.

Siegel |8] introduces a class of integral identities as
generalizations of beta and gamma functions. Using his
results repeatedly, one can find the marginal probabili-
ty density function of (Y,V) as follows. Note that

P(Y,V,0,%)=P(Y16,5)p(Vi6,5)m(6,%)
=N(0’N12)W (25 p’N'l)ﬂ.(oaz).
This leads to

N+m)i2

which fields the marginal probability density function
of Y and of V, as, respectively,
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where N
K= (m-2p) ™P27P2[N/(N+1)] 72T{(m-p)2 }
(T{(m-2p)/2}]".
and
p(V)= IGI™PDHV|SPDZY 4 G N+ mpD2[B {(N-1)/2,
(m-p-1)/2}]"
where for an rXr matrix Z, with a, b> (r-1)/2,
B,(a,b)=T,(a) T,(b) [T, (a+b)]"'
=[1ZF A+ Z] e dZ
and
I'(a) =7""T(a)l'(a-})...I'(a-(r-1)/2).
Similarly, it can be shown that, for m> p,
p(Y)=K[2N/(N+1)] P21 G 2
[(m-2p){1+2(Y-1) G-'(Y.u)}] ™"

which is amultivariate t-distrubution with m-2p degrees
of freedom. Hence, for m-2p > 1 itis known that E(Y)
=g and for m-2p > 2,

Var (Y)= 2(m-2p-2)"'G (2.6)

Here, we adopt a simple approach. Takingm = 2p+ 3,

to insure that the constraint of (2.6) holds, we estimate
u and G, respectively, by

i= aNyEL, v =nsl, (5.9, )

G= (2nN)"2?=1 (Yij'—Y__) (Yij'7),- (2.8)
We have the empirical Bayes (EB) estimators of §andZ
respectively as

bep= (Y+NY)/(N+1) (2.9)

(Y-Y) (Y-Y) }(N+1),N> 1.
o (2.10)
Note that Y and Y are independent statistics. The
;ompeting maximum likelihood (ML) estimators will
Je, respectively,

~ N N
2ep={V+G+
en={ N+1

éML =?,
Su= V/(N-1).

(2.11)
(2.12)
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2.4. Comparison of the EB and ML estimators.

The Bayes risk is the overall expected loss with
respect to all random variables involved. Denote the
Bayes risks of Bayes, EB,and ML estimators byW(O,;B),
and W(8y; ), respectively. Then straightforward com-
putation shows ( using, for example, Searle [7] to
evaluate the expectation of quadratic forms) that

W(85)= N/(N+17trE(3), (2.13)
W(8:5)=(Nn+1)/[Nn(N+1)]trE(3), (2.14)
and

W(6y )= NTrE(). (2.15)

From (2.13), (2.14) and (2.15), it is clear that for all n
and N,

W(85)< W(Bz5) <W(By1).
Furthermore,
W(ep)=(Nn+1) W (Gy /[n(N+1)].

Since the diminishing factor (DMF ),(Nn+1)/[n(N+1)]
isalwayslessthanone,itfollowsthatthe EB estimatoris
always more precise thanisthe MLE. Asn oo, thisfactor
aproaches N/(N+1) and when N-» it tends to 1. That
is, in experiments with a large number of replications
the amount of gain in the Bayes risk is not significant.
However, in experiments with few such the 2 to 4
replications commonly seen in practice, the gain inrisk
is considerable suggesting that in these cases, the EB
estimator should be sought in preference to the ML
estimator. From Efron and Morris[3], these factscanbe
rephrased in terms of the relative savings risk (RSR) of
the EB estimator as

RSR(éEB)=W(éEB) '\V(éa)/[w(éML)'W(éB)}
=[N(n+1)+1}/n(2N+1)=1-(N+1)(n-1)/n(2N+1).

That is , 0 <RSR () <1. The same conclusions that
the EB estimator is preferable are again drawn. Table
2.1shows the DMF and RSR for a few valuesof nand N
illustrating thisfact. Hence, itis concluded that for small
N and/or large nthe empirical Bayes approachrendersa
«better» estimator than does the maximum likelihood.
This is intuitively reasonable since in an experiment
with few replications, one would be better off to
incorporate external relevant information where possi-
ble. The fewer replicates one has, the more valuable the
external information becomes.
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Tabile 2.1. DMF and RSR for selected values of N and n.

DMF RSR
n N=2 3 4 5 ) N=2 3 4 5 o
2 83 .88 .90 .92 1.00 10 71 72 .73 .75
3 .78 83 87 .89 1.00 .60 .62 .63 .64 67
4 75 .81 .85 .88 1.00 55 57 58 .59 .63
5 73 .80 .84 .87 1.00 52 .54 .56 .56 .60
9 70 82 85 1.00 4749 52 .56
00 .67 .75 .80 .83 1.00 40 43 44 45 .50
3. An Application =F|; 2,01 We observe that there is a significant differ-

The Soil Institute of Iran routinely conducts
various experiments either at provincial agricultural
stations or on farmers’ land to provide some set of
recommendations for various crops. We illustrate the
techniques described earlier by analyzing data collected
to investigate the effects of the appliction of various
fertilizers on the productivity of sugarbeet. The
experiment involved twelve treatment combinations of
four levels of nitrogen (N) with four levels of phosphate
(P). The four levels of nitrogen (15,30,45,60 kilograms
per hectare) are denoted by subscripts 1,2,3,and4onN
and likewise four levels of phosphate (0, 20, 40, and 60
kilograms per hectare) by subscripts on P. Combina-
tions NP5, N,P;, N;P,, and N P, were excluded from
the experiment.

The preliminary analysis, Table 3.2, consisted of
the traditional analysis of variance at each location,
according to the standard model

Y=XB+ e, e-N(0,0° I).

In this model X is the usual design matrix and 8 is the
appropriate vector of parameters for a complete block
design model. The mean sum of squares and the
calculated F statistics for each case are summarized in
Table 3.1. Since in the second location 8.23 > 2.79

ence at the 1% level of significance across the different
treatments. Also, there is a significant difference at the
5% level in the different treatments in the third
location. Likewise, there were significant differences at
the 1% level of significance in the effect of blocking in
locations 8,9 and 10.

We conduct a test of homeogeneity of variance
using the Bartlett’s criteria M/C where

M= 2.3026f (a log s>-log s;),
C= 1+(a+ 1)/(3af),
with
$'=a'Ys’

and a (=10) being the number of estimates of the error
mean square (s;”) each with f (=22) degreesof freedom.
Thus for our data, substituting the appropriate values
from Table 3.1, we haveX log s’= 17.1251,5 "= 60.94,
and hence M=18.4342,C=1.0167 and therefore M/C=
18.1314. Since 18.1314 > X~ ;= 16.92 and 18.1314<
X,® o =21.67 we conclude there is a significant
difference across the variances at the 5% but not at the
1% level of significance. Hence, with this indication of
heterogeneity in the variances, a collective analysis of
the experiments is not advisable. A better (relative to
the Bayes risk) estimate of the vector of parameters 8
can be obtained from the empirical Bayes procedure,

Table 3.1. Preliminary analyses of variance and Bartlett’s test.

Place | df 1 2 3 4 5 6 7 8 9 10 | Total
MsTreat. | 11 | 7345 | 219.96 54.48 51.23 | 197.61 104.19 1 17226 | 12536 | 39.88 77.52
MsBlock | 2 | 48.15 39.01 3.95 9.84 96.11 186.10 | 293.44 | 657.21 | 3684.05| 401.58
MsError |22 | 39.52 26.72 20.04 28.70 99.24 57.46 ol.11 61.11 | 60.20 72.98 | 609.42
F(T) 1.86 8.23 272 1.79 1.72 1.81 1.20 2.05 0.66 1.06
F(B) 1.22 1.46 0.20 0.33 0.97 3.24 2.08 10.75 61.20 5.50
Log MSE 15968 | 14268 | 1.3019 | 1.4579 | 1.9967 | 1.7594 | 2.1567 17861 | 1.7796 | 1.8632 | 17.1251
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Table 3.2. The mean vectors of observations (7,) from 3 replicates in 10 locations.

Treat 1 2 3 4 5 6 7 8 9 10
NP, 70.18 53.43 45.00 | 44.27 70.87 64.70 72.97 51.33 76.53 72.63
NP, 76.98 57.80 41.80 53.07 76.50 61.90 64.30 49.70 65.83 71.93
NP, 71.58 61.26 38.63 | 50.27 60.33 60.33 | 77.07 50.10 67.67 74.27
NP, 71.73 58.83 42.07 49.27 69.13 74.73 89.50 63.67 66.33 71.83
N,P, 78.53 72.05 41.37 48.27 72.20 67.63 77.67 62.63 74.10 80.90
N,P, 75.28 65.83 44.90 50.80 79.03 74.67 78.07 61.03 73.37 80.33
N;P, 75.48 62.63 41.73 55.67 68.80 63.70 81.27 57.73 75.57 75.93
N,P, 81.48 70.67 37.40 51.57 80.47 75.10 83.33 65.63 73.93 75.17
N,P, 79.88 68.32 34.53 49.97 76.23 59.93 69.50 64.90 72.93 83.33
N,p; 80.10 67.58 41.00 56.77 84.97 74.37 86.26 68.70 72.00 83.53
NP, 84.17 70.37 43.67 57.53 78.60 69.97 82.10 62.47 72.00 83.20
N.ps 85.53 70.62 49.57 55.97 87.33 70.67 88.30 64.07 72.67 85.43

that is 6.

Before embarking on our empirical Bayes estima-
tion we first adjusted the data for block effects
whenever necessary (locations 8, 9, 10) to reduce the
parameters to those for treatment effects only. We then
develop the empirical Bayes estimate, 555‘,(, for each
locationk= 1,...,10 where in the terminology of Section
2, the kthlocation correspondsto the k= n+1 «current»
datasetand j=1,...,n=9 «past» datasetsare the data of
the other nine locations. Foreachlocationthereare N=
3 replicates. Table 3.2 provides the mean vector of
observations —Y'ky k= 1,..., 10, that is, the maximum
likelihood estimation éML,k (see equation (2.9)). Table
3.3 gives us the empirical Bayes estimate for the vector
of parameters Oz , k=1,...,10,obtained from equation
(2.7) where in (2.7) Yisreplaced by Y, foreachk. Aswe
compare the estimates of these treatment effects in

Tables 3.2 and 3.3, we observe that shrinkage has
resulted either positively or negatively depending on
the particular location. For example, the empirical
Bayes estimators in location 1 are uniformly less than
are the maximum likelihood estimators, while in
contrast in the third region, the empirical Bayes
estimators are all larger than the corresponding
maximum likelihood estimators.

In some locations the shift can be either positive or
negative, for example, in location 5, when nitrogen is
present in either 15 or 30 kilograms per hectare, the
empirical Bayes estimator is larger than the maximum
likelihood estimator but the reverse holds when
nitrogen is present at 45 or 60 kilograms per acre.

It can be shown that an empirical Bayes estimate is a
convex combination of the maximum likelihood esti-
mate and the prior mean of the parameter being

Table 3.3. The empirical Bayes estimates of mean vector for 10 locations 5“

Place 1 2 3 4 5 6 7 8 9 10
Treat
1 NP, | 6818 | 5562 | 49.30 | 4875 | 6870 | 64.07 | 70.27 | 5405 | 7295 | 70.02
2 NP, | 7323 | 5885 | 4685 | 5530 | 7287 | 61.92 | 6327 | 5277 | 64.87 | 69.45
3 NP, | 6898 | 61.23 | 4426 | 5299 | 60.54 | 60.54 | 73.09 | 5284 | 66.04 | 70.99
4 NoPo | 7023 | 6056 | 4799 | 5339 | 6820 | 7249 | 8356 | 6431 | 66.19 | 70.31
5 NP, | 7578 | 7092 | 4791 | 53.09 | 7104 | 6761 | 75.14 | 6386 | 72.44 | 77.56
6 NP, | 7354 | 66.46 | 5076 | 55.18 | 7636 | 73.08 | 75.63 | 62.86 | 72.11 77.33
7 NP, | 73.07 | 63.44 | 4776 | 5821 | 6806 | 64.24 | 77.41 | 5976 | 73.14 | 73.41
8 N,P, 7848 | 7037 | 4542 | 56,04 | 7772 | 7369 | 7987 | 66.52 | 1202 | 73.74
9 NP, | 7634 | 6767 | 4233 | 5216 | 7361 | 61.38 | 6856 | es.11 | 71.13 | 78.93
10 NP, | 7796 | 68.57 | 4863 | 60.46 | 8161 | 73.66 | 6258 | 69.41 | 71.88 | 80.53
1 NP, | 80.73 | 7038 | 5035 | 60.75 | 7655 | 70.08 | 79.18 | 64.45 | 71.60 | 80.00
12 NP, | 848 | 7130 | 5551 | 6031 | 83.83 | 7133 | 8456 | 66.38 | 75.08 | 82.41
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Table 3.4. Sample Variance of BAEB‘,' f{,.

112.32 76.67 73.50 69.99 85.00 81.29
76.67 87.23 67.95 50.80 75.27  69.56
73.50  67.95 105.76 64.43 86.45 6522
69.99  50.80 64.43 106.80 73.56  65.93
85.00 75.27 86.45 73.56 104.41 72.68
H, - 38 81.29  69.65 6522 6593 72.68 100.39
88.75 00.83 83.39 79.54 8823 68.01
64.45 85.39 829 8746 9798  90.04
7937 79.10 7120 77.85 9.6 79.26
80.40  78.03 79.95 8233 9232 76.65
80.29  78.76 86.01 7464 8485 86.32
L94.17 81.28 91.78 9512 96.00 82.45

estimated; in this case,
O =y (Y-T)/(N+1),

so that f ¥ isabove (below) the prior meanestimated by
¥ the shrinkage is downward (upward).

We can show, from (2.6), (2.9) and the fact that Y
and Y are independent, empirical Bayes estimator has
mean u and variance H,

E(8ep)=p
Var(fgg)= 2(nN+ 1)[nN(N+1)*]'G=H

where p and G are estimated by g and G givenin (2.7)
and (2.8), respectively. In our case H is estimated by H
=0.38G. In Table 3.4 we have derived the variance-
covariance matrix G, for the first location. Notice from
(2.8) Gk isthe sample withinlocation variationobtained
from all locations other than the kth location.

The G,,k=2,...,10,canbe calculatedlikewise, but
are not reported here. The variance-covariance matrix
of the maximum likelihood estimate 8y isestimated by

Table 3.5. Sample Variance of é\” aa Ly

88.75 64.45 79.37 80.40 80.29 94.17 T
70.83 85.39 79.10 78.03 78.76 81.28
83.39 98.29 71.20 79.95 86.01 91.78
79.54 87.46 77.85 82.33 74.64 95.12
88.23 97.98 91.16 92.32 84.85 96.00
68.01 90.04 79.29 76.65 86.32 82.45
107.44  102.34 87.34 91.02 89.45 99.75
102.3¢  154.49 115.40 109.29  114.38 116.41
87.34 115.49 151.10  97.86 92.37 114.03
91.02 109.29 97.86 118.46  90.98 101.12
89.45 114.38 92.37 90.98 112.72 108.65
99.75 116.41 114.03 101.12  108.65 146.38

R R 2 _ a
L, 2L,=3 (Yy- Y)(Y,- Y ). k=1,...,10.Thus,Table
r=1

3.5 gives the value of L, for the first location.

Having specified the mean and variance of fgp, We
can then undertake the component analysis desired as
appropriate to the particular factorial experiment. This
is performed using well known techniques. Without
giving this detail, we provide the results of one
component analysis, viz., the determination of the
linear and quadratic components, for the first location
only. We observe that the linear componentof nitrogen
when 40 kilograms per hectare of phosphate are present
is statistically significant at 5% level of significance.

We have not demonstrated the calculation of Zgg |
i= 1,..., 10, here. These computations are not difficult
to carry out although they are lengthy in detail. We
simply use (2.10) replacing V.G and Y by V,, G, Y,,
where G, is estimated by G, as above and V, is
estimated by

~ N .
V,= _El(Yik Yy) (Y- Ya) -
i=

-

N/Po N,P, NP, NP, NP, N,P, NyPo NP, NP, NyP, NP, NP,
N,P, 36.0508
NP, 147458 6.5208
Np: 193108 5.5958 21.1808
34.0733  11.4333 30.0333 45.0133
14.1571 6.6521 3.5296 8.3667 7.0758
-19.2054  -15.0104 23.382i 18.4533 -20.1367  114.8408
N:iPo  68.4896 255396 48.3321 77.3933 225396 0.3054  142.6308
NP, -4.5529 -0.2979 -9.8004 -12.3067 0.9638 -20.4467  -16.5604 55758
NP, -25.1304  .4.8854 -38.8429  -51.3467 -0.3742 -65.4717  -75.0179  20.4158  76.9658
NP, 37.7350 12.6250 33.4350 50.0400 9.8725 209775  85.8975  -13.7475  -57.2725  55.6300
NP,  -0.3833 1.1667 -6.4333 -7.1333 2.1792 -19.1458  -7.4208  4.2792 14.8542  -8.000 3.5833
N,P,  -43.2592 -17.4792 -24.1842 -41.9867 -16.6908  19.9008  -83.2717  6.1508 32.5258  -46.5150  1.0417  52.0033
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Table 3.6. The t-test for linear and quadratic components.

N

P i 2 3 4 Linear | SE,, t quadratic | SE, to
01 68.18 70.23 73.07 - 4.89 | 4101 | 1.22 0.79 927 | 0.0
1] 73.23 75.78 78.48 _ 525 | 5.191 1.01 0.15 7.23 1 0.02
2 | 68.98 73.54 76.34 80.73 |} 38.04 |13.94{ 2.73 0.17 8.04 | -0.02
3 _ - 77.96 82.48 452 | 4871093 - - -

Linear(L) 0.80 3.31 12.53 1.75

SE(Ly! 052 5.35 13.65 3.94
] 154 0.62 0.92 0.44

Quadratic | -9.30 -7.79 -3.79 -

SE(Q) | 8.33 8.08 7.56 -
g | -1.12 —0.96 -0.50 —
Conclusion References

By utilizing information contained in the data
gathered from other locations in a series of experi-
ments, we have been able to provide better estimates of
the vector of parameters representing the treatment
effects for a given specific location. These estimates
have been obtained by exploiting the principles of
empirical Bayes procedures and have been shown to be
better ( in that the Bayes risk is smaller) than are the
conventional maximum likelihood estimates of these
treatment effects. The advantages of this approach are
particularly enhanced when, as in our series of
experiments under study, there is heterogeneity of
variances across the individual experiments.
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